A) 2 atoms of carbon (C) B) 3 atoms of carbon (C) C) 6 atoms of carbon (C). D) 12 atoms of. 100g of radioactive element X are placed in a sealed box. The half-life of this isotope of X is 2 days. After 4 days have passed, what is the mass of element X in the box? Isotopes are atoms of the same element that contain different numbers of neutrons. For these species, the number of electrons and protons remain constant. This difference in neutron amount affects the atomic mass (A) but not the atomic number (Z). In a chemical laboratory, isotopes of an element appear and react the same. Option c is the correct answer. Isotopes are atoms of the same element with different numbers of neutrons. Option a cannot be correct because differences in electron numbers describes ions, not. Atoms of different elements can join to form larger atoms. Atoms can be subdivided into smaller particles. Atoms of the same element differ in electric charge. Atoms of the same element are exactly alike. Weegy: Atoms of the same element are exactly alike is true according to Dalton's theory. Yumdrea Points 11590. Two atoms of the same chemical element are typically notidentical. First of all, there is a range of possible states that the electrons of an atom can occupy. Two atoms of the same element can be different if their electrons are in different states.

Article
  • Atomic model
    • Basic properties
    • The electron
    • The nucleus
  • Development of atomic theory
    • The beginnings of modern atomic theory
    • Studies of the properties of atoms
    • Models of atomic structure
    • Advances in nuclear and subatomic physics
Please select which sections you would like to print:
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.

Our editors will review what you’ve submitted and determine whether to revise the article.

Join Britannica's Publishing Partner Program and our community of experts to gain a global audience for your work! Atoms of the same element but different masses
Articles from Britannica Encyclopedias for elementary and high school students.
James TrefilSee All Contributors
Clarence J. Robinson Professor of Physics, George Mason University, Fairfax, Virginia. Author of Science Matters: Achieving Scientific Literacy; Other Worlds: The Solar System and Beyond; and Encyclopedia...

Atom, smallest unit into which matter can be divided without the release of electrically charged particles. It also is the smallest unit of matter that has the characteristic properties of a chemical element. As such, the atom is the basic building block of chemistry.

Most of the atom is empty space. The rest consists of a positively charged nucleus of protons and neutrons surrounded by a cloud of negatively charged electrons. The nucleus is small and dense compared with the electrons, which are the lightest charged particles in nature. Electrons are attracted to any positive charge by their electric force; in an atom, electric forces bind the electrons to the nucleus.

Because of the nature of quantum mechanics, no single image has been entirely satisfactory at visualizing the atom’s various characteristics, which thus forces physicists to use complementary pictures of the atom to explain different properties. In some respects, the electrons in an atom behave like particles orbiting the nucleus. In others, the electrons behave like waves frozen in position around the nucleus. Such wave patterns, called orbitals, describe the distribution of individual electrons. The behaviour of an atom is strongly influenced by these orbital properties, and its chemical properties are determined by orbital groupings known as shells.

This article opens with a broad overview of the fundamental properties of the atom and its constituent particles and forces. Following this overview is a historical survey of the most influential concepts about the atom that have been formulated through the centuries. For additional information pertaining to nuclear structure and elementary particles, seesubatomic particles.

Get a Britannica Premium subscription and gain access to exclusive content. Subscribe Now

Atomic model

Most matter consists of an agglomeration of molecules, which can be separated relatively easily. Molecules, in turn, are composed of atoms joined by chemical bonds that are more difficult to break. Each individual atom consists of smaller particles—namely, electrons and nuclei. These particles are electrically charged, and the electric forces on the charge are responsible for holding the atom together. Attempts to separate these smaller constituent particles require ever-increasing amounts of energy and result in the creation of new subatomic particles, many of which are charged.

As noted in the introduction to this article, an atom consists largely of empty space. The nucleus is the positively charged centre of an atom and contains most of its mass. It is composed of protons, which have a positive charge, and neutrons, which have no charge. Protons, neutrons, and the electrons surrounding them are long-lived particles present in all ordinary, naturally occurring atoms. Other subatomic particles may be found in association with these three types of particles. They can be created only with the addition of enormous amounts of energy, however, and are very short-lived.

All atoms are roughly the same size, whether they have 3 or 90 electrons. Approximately 50 million atoms of solid matter lined up in a row would measure 1 cm (0.4 inch). A convenient unit of length for measuring atomic sizes is the angstrom (Å), defined as 10−10 metre. The radius of an atom measures 1–2 Å. Compared with the overall size of the atom, the nucleus is even more minute. It is in the same proportion to the atom as a marble is to a football field. In volume the nucleus takes up only 10−14 metres of the space in the atom—i.e., 1 part in 100,000. A convenient unit of length for measuring nuclear sizes is the femtometre (fm), which equals 10−15 metre. The diameter of a nucleus depends on the number of particles it contains and ranges from about 4 fm for a light nucleus such as carbon to 15 fm for a heavy nucleus such as lead. In spite of the small size of the nucleus, virtually all the mass of the atom is concentrated there. The protons are massive, positively charged particles, whereas the neutrons have no charge and are slightly more massive than the protons. The fact that nuclei can have anywhere from 1 to nearly 300 protons and neutrons accounts for their wide variation in mass. The lightest nucleus, that of hydrogen, is 1,836 times more massive than an electron, while heavy nuclei are nearly 500,000 times more massive.

Basic properties

Atoms Of The Same Element

Atomic number

The single most important characteristic of an atom is its atomic number (usually denoted by the letter Z), which is defined as the number of units of positive charge (protons) in the nucleus. For example, if an atom has a Z of 6, it is carbon, while a Z of 92 corresponds to uranium. A neutral atom has an equal number of protons and electrons so that the positive and negative charges exactly balance. Since it is the electrons that determine how one atom interacts with another, in the end it is the number of protons in the nucleus that determines the chemical properties of an atom.

Quick Facts
key people
related topics

Learning Objectives

  1. State the modern atomic theory.
  2. Learn how atoms are constructed.

The smallest piece of an element that maintains the identity of that element is called an atom. Individual atoms are extremely small. It would take about fifty million atoms in a row to make a line that is 1 cm long. The period at the end of a printed sentence has several million atoms in it. Atoms are so small that it is difficult to believe that all matter is made from atoms—but it is.

The concept that atoms play a fundamental role in chemistry is formalized by the modern atomic theory, first stated by John Dalton, an English scientist, in 1808. It consists of three parts:

  1. All matter is composed of atoms.
  2. Atoms of the same element are the same; atoms of different elements are different.
  3. Atoms combine in whole-number ratios to form compounds.

These concepts form the basis of chemistry.

Although the word atom comes from a Greek word that means “indivisible,” we understand now that atoms themselves are composed of smaller parts called subatomic particles. The first part to be discovered was the electron, a tiny subatomic particle with a negative charge. It is often represented as e, with the right superscript showing the negative charge. Later, two larger particles were discovered. The proton is a more massive (but still tiny) subatomic particle with a positive charge, represented as p+. The neutron is a subatomic particle with about the same mass as a proton but no charge. It is represented as either n or n0. We now know that all atoms of all elements are composed of electrons, protons, and (with one exception) neutrons. Table 3.1 “Properties of the Three Subatomic Particles” summarizes the properties of these three subatomic particles.

Table 3.1 Properties of the Three Subatomic Particles

NameSymbolMass (approx.; kg)Charge
Protonp+1.6 × 10−271+
Neutronn, n01.6 × 10−27none
Electrone9.1 × 10−311−

How are these particles arranged in atoms? They are not arranged at random. Experiments by Ernest Rutherford in England in the 1910s pointed to a nuclear model of the atom. The relatively massive protons and neutrons are collected in the center of an atom, in a region called the nucleus of the atom (plural nuclei). The electrons are outside the nucleus and spend their time orbiting in space about the nucleus. (See Figure 3.1 “The Structure of the Atom”.)

Figure 3.1 The Structure of the Atom

Atoms have protons and neutrons in the center, making the nucleus, while the electrons orbit the nucleus.

The modern atomic theory states that atoms of one element are the same, while atoms of different elements are different. What makes atoms of different elements different? The fundamental characteristic that all atoms of the same element share is the number of protons. All atoms of hydrogen have one and only one proton in the nucleus; all atoms of iron have 26 protons in the nucleus. This number of protons is so important to the identity of an atom that it is called the atomic number of the element. Thus, hydrogen has an atomic number of 1, while iron has an atomic number of 26. Each element has its own characteristic atomic number.

Atoms of the same element can have different numbers of neutrons, however. Atoms of the same element (i.e., atoms with the same number of protons) with different numbers of neutrons are called isotopes. Most naturally occurring elements exist as isotopes. For example, most hydrogen atoms have a single proton in their nucleus. However, a small number (about one in a million) of hydrogen atoms have a proton and a neutron in their nuclei. This particular isotope of hydrogen is called deuterium. A very rare form of hydrogen has one proton and two neutrons in the nucleus; this isotope of hydrogen is called tritium. The sum of the number of protons and neutrons in the nucleus is called the mass number of the isotope.

Neutral atoms have the same number of electrons as they have protons, so their overall charge is zero. However, as we shall see later, this will not always be the case.

Example 1

  1. The most common carbon atoms have six protons and six neutrons in their nuclei. What are the atomic number and the mass number of these carbon atoms?
  2. An isotope of uranium has an atomic number of 92 and a mass number of 235. What are the number of protons and neutrons in the nucleus of this atom?

Solution

  1. If a carbon atom has six protons in its nucleus, its atomic number is 6. If it also has six neutrons in the nucleus, then the mass number is 6 + 6, or 12.
  2. If the atomic number of uranium is 92, then that is the number of protons in the nucleus. Because the mass number is 235, then the number of neutrons in the nucleus is 235 − 92, or 143.

Test Yourself

The number of protons in the nucleus of a tin atom is 50, while the number of neutrons in the nucleus is 68. What are the atomic number and the mass number of this isotope?

Answer

Atomic number = 50, mass number = 118

When referring to an atom, we simply use the element’s name: the term sodium refers to the element as well as an atom of sodium. But it can be unwieldy to use the name of elements all the time. Instead, chemistry defines a symbol for each element. The atomic symbol is a one- or two-letter abbreviation of the name of the element. By convention, the first letter of an element’s symbol is always capitalized, while the second letter (if present) is lowercase. Thus, the symbol for hydrogen is H, the symbol for sodium is Na, and the symbol for nickel is Ni. Most symbols come from the English name of the element, although some symbols come from an element’s Latin name. (The symbol for sodium, Na, comes from its Latin name, natrium.) Table 3.2 “Names and Symbols of Common Elements” lists some common elements and their symbols. You should memorize the symbols in Table 3.2 “Names and Symbols of Common Elements”, as this is how we will be representing elements throughout chemistry.

Table 3.2 Names and Symbols of Common Elements

Element NameSymbol

Element NameSymbol
AluminumAlMercuryHg
ArgonArMolybdenumMo
ArsenicAsNeonNe
BariumBaNickelNi
BerylliumBeNitrogenN
BismuthBiOxygenO
BoronBPalladiumPd
BromineBrPhosphorusP
CalciumCaPlatinumPt
CarbonCPotassiumK
ChlorineClRadiumRa
ChromiumCrRadonRn
CobaltCoRubidiumRb
CopperCuScandiumSc
FluorineFSeleniumSe
GalliumGaSiliconSi
GermaniumGeSilverAg
GoldAuSodiumNa
HeliumHeStrontiumSr
HydrogenHSulfurS
IodineITantalumTa
IridiumIrTinSn
IronFeTitaniumTi
KryptonKrTungstenW
LeadPbUraniumU
LithiumLiXenonXe
MagnesiumMgZincZn
ManganeseMnZirconiumZr

The elements are grouped together in a special chart called the periodic table. A simple periodic table is shown in Figure 3.2 “A Simple Periodic Table”, while a more extensive one is presented in Chapter 17 “Appendix: Periodic Table of the Elements”. The elements on the periodic table are listed in order of ascending atomic number. The periodic table has a special shape that will become important to us when we consider the organization of electrons in atoms (see Chapter 8 “Electronic Structure”). One immediate use of the periodic table helps us identify metals and nonmetals. Nonmetals are in the upper right corner of the periodic table, on one side of the heavy line splitting the right-hand part of the chart. All other elements are metals.

Figure 3.2 A Simple Periodic Table

There is an easy way to represent isotopes using the atomic symbols. We use the construction

Atoms

where X is the symbol of the element, A is the mass number, and Z is the atomic number. Thus, for the isotope of carbon that has 6 protons and 6 neutrons, the symbol is

where C is the symbol for the element, 6 represents the atomic number, and 12 represents the mass number.

Example 2

  1. What is the symbol for an isotope of uranium that has an atomic number of 92 and a mass number of 235?
  2. How many protons and neutrons are in 26Fe?

Solution

  1. The symbol for this isotope is
  2. This iron atom has 26 protons and 56 − 26 = 30 neutrons.

Test Yourself

How many protons are in 11N?

Answer

11 protons

It is also common to state the mass number after the name of an element to indicate a particular isotope. Carbon-12 represents an isotope of carbon with 6 protons and 6 neutrons, while uranium-238 is an isotope of uranium that has 146 neutrons.

Key Takeaways

  • Chemistry is based on the modern atomic theory, which states that all matter is composed of atoms.
  • Atoms themselves are composed of protons, neutrons, and electrons.
  • Each element has its own atomic number, which is equal to the number of protons in its nucleus.
  • Isotopes of an element contain different numbers of neutrons.
  • Elements are represented by an atomic symbol.
  • The periodic table is a chart that organizes all the elements.

Atoms Of The Same Element Can Differ In

Exercises

List the three statements that make up the modern atomic theory.

Which is larger, a proton or an electron?

Atoms Of The Same Element That Have Different Masses

What are the charges for each of the three subatomic particles?

Sketch a diagram of a boron atom, which has five protons and six neutrons in its nucleus.

Sketch a diagram of a helium atom, which has two protons and two neutrons in its nucleus.

Define atomic number. What is the atomic number for a boron atom?

Define isotope and give an example.

What is the difference between deuterium and tritium?

a)

b) 26F and 25M

c) 14S and 15P

14. Which pair represents isotopes?

a) 20C and 19K

b) 26F and 26F

c) 92U and 92U

15. Give complete symbols of each atom, including the atomic number and the mass number.

a) an oxygen atom with 8 protons and 8 neutrons

b) a potassium atom with 19 protons and 20 neutrons

c) a lithium atom with 3 protons and 4 neutrons

Atoms of the same element but different masses

16. Give complete symbols of each atom, including the atomic number and the mass number.

a) a magnesium atom with 12 protons and 12 neutrons

b) a magnesium atom with 12 protons and 13 neutrons

c) a xenon atom with 54 protons and 77 neutrons

17. Americium-241 is an isotope used in smoke detectors. What is the complete symbol for this isotope?

18. Carbon-14 is an isotope used to perform radioactive dating tests on previously living material. What is the complete symbol for this isotope?

19. Give atomic symbols for each element.

a) sodium

b) argon

c) nitrogen

d) radon

20. Give atomic symbols for each element.

a) silver

b) gold

c) mercury

d) iodine

21. Give the name of the element.

a) Si

b) Mn

c) Fe

d) Cr

22. Give the name of the element.

a) F

b) Cl

c) Br

d) I

Answers

1.

All matter is composed of atoms; atoms of the same element are the same, and atoms of different elements are different; atoms combine in whole-number ratios to form compounds.

3.

A proton is larger than an electron.

5.

proton: 1+; electron: 1−; neutron: 0

7.

9.

The atomic number is the number of protons in a nucleus. Boron has an atomic number of five.

11.

Isotopes are atoms of the same element but with different numbers of neutrons. are examples.

13.

a) isotopes

b) not isotopes

c) not isotopes

15.

a)

b) 19K

c)

17.

95A

19.

a) Na

b) Ar

c) N

d) Rn

21.

a) silicon

b) manganese

c) iron

d) chromium